Mathematics > Analysis of PDEs
[Submitted on 20 Apr 2018 (v1), last revised 19 Dec 2018 (this version, v3)]
Title:Linear Stability of Compressible Vortex Sheets in 2D Elastodynamics: Variable Coefficients
View PDFAbstract:The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work on the linear stability with constant coefficients, the problem has a free boundary which is characteristic, and also the Kreiss-Lopatinskii condition is not uniformly satisfied. In addition, the roots of the Lopatinskii determinant of the para-linearized system may coincide with the poles of the system. Such a new collapsing phenomenon causes serious difficulties when applying the bicharacteristic extension method. Motivated by our method introduced in the constant-coefficient case, we perform an upper triangularization to the para-linearized system to separate the outgoing mode into a closed form where the outgoing mode only appears at the leading order. This procedure results in a gain of regularity for the outgoing mode which allows us to overcome the loss of regularity of the characteristic components at the poles, and hence to close all the energy estimates. We find that, analogous to the constant coefficient case, elasticity generates notable stabilization effects, and there are additional stable subsonic regions compared with the isentropic Euler flows. Moreover, since our method does not rely on the construction of the bicharacterisic curves, it can also be applied to other fluid models such as the non-isentropic Euler equations and the MHD equations.
Submission history
From: Dehua Wang [view email][v1] Fri, 20 Apr 2018 22:34:40 UTC (38 KB)
[v2] Fri, 8 Jun 2018 19:58:54 UTC (38 KB)
[v3] Wed, 19 Dec 2018 03:21:01 UTC (33 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.