Mathematics > Metric Geometry
[Submitted on 21 Apr 2018]
Title:Sufficient conditions for the global rigidity of periodic graphs
View PDFAbstract:Tanigawa (2016) showed that vertex-redundant rigidity of a graph implies its global rigidity in arbitrary dimension. We extend this result to periodic graphs under fixed lattice representations. A periodic graph is vertex-redundantly rigid if the deletion of a single vertex orbit under the periodicity results in a periodically rigid graph. Our proof is similar to the one of Tanigawa, but there are some added difficulties. First, it is not known whether periodic global rigidity is a generic property. This issue is resolved via a slight modification of a recent result of Kaszanitzy, Schulze and Tanigawa (2016). Secondly, while the rigidity of finite graphs in $\mathbb{R}^d$ on at most $d$ vertices obviously implies their global rigidity, it is non-trivial to prove a similar result for periodic graphs. This is accomplished by extending a result of Bezdek and Connelly (2002) on the existence of a continuous movement between two equivalent $d$-dimensional realisations of a single graph in $\mathbb{R}^{2d}$ to periodic frameworks.
As an application of our result, we give a necessary and sufficient condition for the global rigidity of generic periodic body-bar frameworks in arbitrary dimension. This provides a periodic counterpart to a result of Connelly, Jordan and Whiteley (2013) regarding the global rigidity of generic finite body-bar frameworks.
Current browse context:
math.MG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.