Mathematics > Algebraic Geometry
[Submitted on 22 Apr 2018 (v1), last revised 18 Jan 2021 (this version, v3)]
Title:Variations on a Theme of Schubert Calculus
View PDFAbstract:In this tutorial, we provide an overview of many of the established combinatorial and algebraic tools of Schubert calculus, the modern area of enumerative geometry that encapsulates a wide variety of topics involving intersections of linear spaces. It is intended as a guide for readers with a combinatorial bent to understand and appreciate the geometric and topological aspects of Schubert calculus, and conversely for geometric-minded readers to gain familiarity with the relevant combinatorial tools in this area.
We lead the reader through a tour of three variations on a theme: Grassmannians, flag varieties, and orthogonal Grassmannians. The orthogonal Grassmannian, unlike the ordinary Grassmannian and the flag variety, has not yet been addressed very often in textbooks, so this presentation may be helpful as an introduction to type B Schubert calculus.
This work is adapted from the author's lecture notes for a graduate workshop during the Equivariant Combinatorics Workshop at the Center for Mathematics Research, Montreal, June 12-16, 2017.
Submission history
From: Maria Gillespie [view email][v1] Sun, 22 Apr 2018 20:34:58 UTC (611 KB)
[v2] Thu, 26 Apr 2018 15:55:45 UTC (611 KB)
[v3] Mon, 18 Jan 2021 18:19:39 UTC (611 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.