Mathematics > Combinatorics
[Submitted on 23 Apr 2018]
Title:On the Relationship Between Ehrhart Unimodality and Ehrhart Positivity
View PDFAbstract:For a given lattice polytope, two fundamental problems within the field of Ehrhart theory are to (1) determine if its (Ehrhart) $h^\ast$-polynomial is unimodal and (2) to determine if its Ehrhart polynomial has only positive coefficients. The former property of a lattice polytope is known as Ehrhart unimodality and the latter property is known as Ehrhart positivity. These two properties are often simultaneously conjectured to hold for interesting families of lattice polytopes, yet they are typically studied in parallel. As to answer a question posed at the 2017 Introductory Workshop to the MSRI Semester on Geometric and Topological Combinatorics, the purpose of this note is to show that there is no general implication between these two properties in any dimension greater than two. To do so, we investigate these two properties for families of well-studied lattice polytopes, assessing one property where previously only the other had been considered. Consequently, new examples of each phenomena are developed, some of which provide an answer to an open problem in the literature. The well-studied families of lattice polytopes considered include zonotopes, matroid polytopes, simplices of weighted projective spaces, empty lattice simplices, smooth polytopes, and $s$-lecture hall simplices.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.