Mathematics > Analysis of PDEs
[Submitted on 23 Apr 2018]
Title:Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method
View PDFAbstract:We study the large time behavior of solutions to two-dimensional Euler and Navier-Stokes equations linearized about shear flows of the mixing layer type in the unbounded channel $\mathbb{T} \times \mathbb{R}$. Under a simple spectral stability assumption on a self-adjoint operator, we prove a local form of the linear inviscid damping that is uniform with respect to small viscosity. We also prove a local form of the enhanced viscous dissipation that takes place at times of order $\nu^{-1/3}$, $\nu$ being the small viscosity. To prove these results, we use a Hamiltonian approach, following the conjugate operator method developed in the study of Schrödinger operators, combined with a hypocoercivity argument to handle the viscous case.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.