Mathematics > Numerical Analysis
[Submitted on 23 Apr 2018 (v1), last revised 6 Dec 2018 (this version, v4)]
Title:Convergence rates of the front tracking method for conservation laws in the Wasserstein distances
View PDFAbstract:We prove that front tracking approximations to entropy solutions of scalar conservation laws with convex fluxes converge at a rate of $\Delta x^2$ in the 1-Wasserstein distance $W_1$. Assuming positive initial data, we also show that the approximations converge at a rate of $\Delta x$ in the $\infty$-Wasserstein distance $W_\infty$. Moreover, from a simple interpolation inequality between $W_1$ and $W_\infty$ we obtain convergence rates in all the $p$-Wasserstein distances: $\Delta x^{1+1/p}$, $p \in [1,\infty]$.
Submission history
From: Susanne Solem [view email][v1] Mon, 23 Apr 2018 09:52:56 UTC (52 KB)
[v2] Wed, 25 Apr 2018 11:13:17 UTC (52 KB)
[v3] Thu, 24 May 2018 09:42:09 UTC (52 KB)
[v4] Thu, 6 Dec 2018 10:53:50 UTC (55 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.