Mathematics > Numerical Analysis
[Submitted on 23 Apr 2018 (v1), last revised 2 Feb 2019 (this version, v2)]
Title:Optimal Transport Approximation of 2-Dimensional Measures
View PDFAbstract:We propose a fast and scalable algorithm to project a given density on a set of structured measures defined over a compact 2D domain. The measures can be discrete or supported on curves for instance. The proposed principle and algorithm are a natural generalization of previous results revolving around the generation of blue-noise point distributions, such as Lloyd's algorithm or more advanced techniques based on power diagrams. We analyze the convergence properties and propose new approaches to accelerate the generation of point distributions. We also design new algorithms to project curves onto spaces of curves with bounded length and curvature or speed and acceleration. We illustrate the algorithm's interest through applications in advanced sampling theory, non-photorealistic rendering and path planning.
Submission history
From: Léo Lebrat [view email][v1] Mon, 23 Apr 2018 11:58:05 UTC (8,759 KB)
[v2] Sat, 2 Feb 2019 15:41:54 UTC (9,441 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.