Computer Science > Information Theory
[Submitted on 20 Apr 2018]
Title:Robust User Scheduling with COST 2100 Channel Model for Massive MIMO Networks
View PDFAbstract:This paper considers a Massive multiple-input multiple-output (MIMO) network, where the base station (BS) with a large number of antennas communicates with a smaller number of users. The signals are transmitted using frequency division duplex (FDD) mode. The problem of user scheduling with reduced overhead of channel estimation in the uplink of Massive MIMO systems has been investigated. We consider the COST 2100 channel model. In this paper, we first propose a new user selection algorithm based on knowledge of the geometry of the service area and of location of clusters, without having full channel state information (CSI) at the BS. We then show that the correlation in geometry-based stochastic channel models (GSCMs) arises from the common clusters in the area. In addition, exploiting the closed-form Cramer-Rao lower bounds (CRLB)s, the analysis for the robustness of the proposed scheme to cluster position errors is presented. It is shown by analysing the capacity upper-bound that the capacity strongly depends on the position of clusters in the GSCMs and users in the system. Simulation results show that although the BS receiver does not require the channel information of all users, by the proposed geometry-based user scheduling (GUS) algorithm the sum-rate of the system is only slightly less than the well-known greedy weight clique (GWC) scheme \cite{SUSGoldsmithGlobcom,ITC09_Userselection_GWC}. {Finally, the robustness of the proposed algorithm to cluster localization is verified by the simulation results.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.