Mathematics > Metric Geometry
[Submitted on 19 Apr 2018]
Title:Convexity of Balls in Gromov--Hausdorff Space
View PDFAbstract:In this paper we study the space $\mathcal{M}$ of all nonempty compact metric spaces considered up to isometry, equipped with the Gromov--Hausdorff distance. We show that each ball in $\mathcal{M}$ with center at the one-point space is convex in the weak sense, i.e., every two points of such a ball can be joined by a shortest curve that belongs to this ball, however, such a ball is not convex in the strong sense: it is not true that every shortest curve joining the points of the ball belongs to this ball. We also show that a ball of sufficiently small radius with center at a space of general position is convex in the weak sense.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.