Mathematics > Probability
[Submitted on 23 Apr 2018 (v1), last revised 11 Mar 2019 (this version, v3)]
Title:One-dimensional scaling limits in a planar Laplacian random growth model
View PDFAbstract:We consider a family of growth models defined using conformal maps in which the local growth rate is determined by $|\Phi_n'|^{-\eta}$, where $\Phi_n$ is the aggregate map for $n$ particles. We establish a scaling limit result in which strong feedback in the growth rule leads to one-dimensional limits in the form of straight slits. More precisely, we exhibit a phase transition in the ancestral structure of the growing clusters: for $\eta>1$, aggregating particles attach to their immediate predecessors with high probability, while for $\eta<1$ almost surely this does not happen.
Submission history
From: Amanda Turner [view email][v1] Mon, 23 Apr 2018 14:25:28 UTC (232 KB)
[v2] Mon, 9 Jul 2018 13:21:28 UTC (229 KB)
[v3] Mon, 11 Mar 2019 15:44:25 UTC (234 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.