Mathematics > Numerical Analysis
[Submitted on 24 Apr 2018]
Title:An Invariant-region-preserving (IRP) Limiter to DG Methods for Compressible Euler Equations
View PDFAbstract:We introduce an explicit invariant-region-preserving limiter applied to DG methods for compressible Euler equations. The invariant region considered consists of positivity of density and pressure and a maximum principle of a specific entropy. The modified polynomial by the limiter preserves the cell average, lies entirely within the invariant region and does not destroy the high order of accuracy for smooth solutions. Numerical tests are presented to illustrate the properties of the limiter. In particular, the tests on Riemann problems show that the limiter helps to damp the oscillations near discontinuities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.