Mathematics > Numerical Analysis
[Submitted on 24 Apr 2018]
Title:An invariant-region-preserving limiter for DG schemes to isentropic Euler equations
View PDFAbstract:In this paper, we introduce an invariant-region-preserving (IRP) limiter for the p-system and the corresponding viscous p-system, both of which share the same invariant region. Rigorous analysis is presented to show that for smooth solutions the order of approximation accuracy is not destroyed by the IRP limiter, provided the cell average stays away from the boundary of the invariant region. Moreover, this limiter is explicit, and easy for computer implementation. A generic algorithm incorporating the IRP limiter is presented for high order finite volume type schemes as long as the evolved cell average of the underlying scheme stays strictly within the invariant region. For any high order discontinuous Galerkin (DG) scheme to the p-system, sufficient conditions are obtained for cell averages to stay in the invariant region. For the viscous p-system, we design both second and third order IRP DG schemes. Numerical experiments are provided to test the proven properties of the IRP limiter and the performance of IRP DG schemes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.