Mathematics > Number Theory
[Submitted on 24 Apr 2018 (v1), last revised 21 Feb 2020 (this version, v2)]
Title:An upper bound for discrete moments of the derivative of the Riemann zeta-function
View PDFAbstract:Assuming the Riemann hypothesis, we establish an upper bound for the $2k$-th discrete moment of the derivative of the Riemann zeta-function at nontrivial zeros, where $k$ is a positive real number. Our upper bound agrees with conjectures of Gonek and Hejhal and of Hughes, Keating, and O'Connell. This sharpens a result of Milinovich. Our proof builds upon a method of Adam Harper concerning continuous moments of the zeta-function on the critical line.
Submission history
From: Scott Kirila [view email][v1] Tue, 24 Apr 2018 03:09:45 UTC (15 KB)
[v2] Fri, 21 Feb 2020 14:05:10 UTC (39 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.