Computer Science > Information Theory
[Submitted on 24 Apr 2018]
Title:Rate-Distortion Theory for General Sets and Measures
View PDFAbstract:This paper is concerned with a rate-distortion theory for sequences of i.i.d. random variables with general distribution supported on general sets including manifolds and fractal sets. Manifold structures are prevalent in data science, e.g., in compressed sensing, machine learning, image processing, and handwritten digit recognition. Fractal sets find application in image compression and in modeling of Ethernet traffic. We derive a lower bound on the (single-letter) rate-distortion function that applies to random variables X of general distribution and for continuous X reduces to the classical Shannon lower bound. Moreover, our lower bound is explicit up to a parameter obtained by solving a convex optimization problem in a nonnegative real variable. The only requirement for the bound to apply is the existence of a sigma-finite reference measure for X satisfying a certain subregularity condition. This condition is very general and prevents the reference measure from being highly concentrated on balls of small radii. To illustrate the wide applicability of our result, we evaluate the lower bound for a random variable distributed uniformly on a manifold, namely, the unit circle, and a random variable distributed uniformly on a self-similar set, namely, the middle third Cantor set.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.