Mathematics > Functional Analysis
[Submitted on 24 Apr 2018]
Title:An Analytic Model for left invertible Weighted Translation Semigroups
View PDFAbstract:M. Embry and A. Lambert initiated the study of a semigroup of operators $\{S_t\}$ indexed by a non-negative real number $t$ and termed it as weighted translation semigroup. The operators $S_t$ are defined on $L^2(\mathbb R_+)$ by using a weight function. The operator $S_t$ can be thought of as a continuous analogue of a weighted shift operator. In this paper, we show that every left invertible operator $S_t$ can be modeled as a multiplication by $z$ on a reproducing kernel Hilbert space $\cal H$ of vector-valued analytic functions on a certain disc centered at the origin and the reproducing kernel associated with $\cal H$ is a diagonal operator. As it turns out that every hyperexpansive weighted translation semigroup is left invertile, the model applies to these semigroups. We also describe the spectral picture for the left invertible weighted translation semigroup. In the process, we point out the similarities and differences between a weighted shift operator and an operator $S_t.$
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.