Mathematics > Probability
[Submitted on 25 Apr 2018 (v1), last revised 1 May 2019 (this version, v2)]
Title:Stability Properties of Systems of Linear Stochastic Differential Equations with Random Coefficients
View PDFAbstract:This work is concerned with the stability properties of linear stochastic differential equations with random (drift and diffusion) coefficient matrices, and the stability of a corresponding random transition matrix (or exponential semigroup). We consider a class of random matrix drift coefficients that involves random perturbations of an exponentially stable flow of deterministic (time-varying) drift matrices. In contrast with more conventional studies, our analysis is not based on the existence of Lyapunov functions, and it does not rely on any ergodic properties. These approaches are often difficult to apply in practice when the drift/diffusion coefficients are random. We present rather weak and easily checked perturbation-type conditions for the asymptotic stability of time-varying and random linear stochastic differential equations. We provide new log-Lyapunov estimates and exponential contraction inequalities on any time horizon as soon as the fluctuation parameter is sufficiently small. These seem to be the first results of this type for this class of linear stochastic differential equations with random coefficient matrices.
Submission history
From: Adrian Bishop [view email][v1] Wed, 25 Apr 2018 05:01:30 UTC (16 KB)
[v2] Wed, 1 May 2019 10:32:28 UTC (21 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.