Mathematics > Combinatorics
[Submitted on 25 Apr 2018 (v1), last revised 4 Apr 2021 (this version, v5)]
Title:Nonnegative Polynomials and Circuit Polynomials
View PDFAbstract:The concept of sums of nonnegative circuit polynomials (SONC) was recently introduced as a new certificate of nonnegativity especially for sparse polynomials. In this paper, we explore the relationship between nonnegative polynomials and SONC polynomials. As a first result, we provide sufficient conditions for nonnegative polynomials with general Newton polytopes to be SONC polynomials, which generalizes the previous result on nonnegative polynomials with simplex Newton polytopes. Secondly, we prove that every SONC polynomial admits a SONC decomposition without cancellation. In other words, SONC decompositions can exactly preserve the sparsity of nonnegative polynomials, which is dramatically different from the classical sum of squares (SOS) decompositions and is a key property to design efficient algorithms for sparse polynomial optimization based on SONC decompositions.
Submission history
From: Jie Wang [view email][v1] Wed, 25 Apr 2018 09:50:59 UTC (10 KB)
[v2] Mon, 26 Nov 2018 07:29:07 UTC (15 KB)
[v3] Tue, 22 Jan 2019 12:39:50 UTC (15 KB)
[v4] Tue, 7 Jan 2020 17:36:07 UTC (16 KB)
[v5] Sun, 4 Apr 2021 22:45:55 UTC (45 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.