Mathematics > Numerical Analysis
[Submitted on 25 Apr 2018]
Title:A comparison of eigenvalue condition numbers for matrix polynomials
View PDFAbstract:In this paper, we consider the different eigenvalue condition numbers for matrix polynomials used in the literature and we compare them. One of these condition numbers is a generalization of the Wilkinson condition number for the standard eigenvalue problem. This number has the disadvantage of only being defined for finite eigenvalues. In order to give a unified approach to all the eigenvalues of a matrix polynomial, both finite and infinite, two (homogeneous) condition numbers have been defined in the literature. In their definition, very different approaches are used. One of the main goals of this note is to show that, when the matrix polynomial has a moderate degree, both homogeneous numbers are essentially the same and one of them provides a geometric interpretation of the other. We also show how the homogeneous condition numbers compare with the "Wilkinson-like" eigenvalue condition number and how they extend this condition number to zero and infinite eigenvalues.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.