High Energy Physics - Theory
[Submitted on 1 May 2018 (v1), last revised 2 Apr 2020 (this version, v2)]
Title:Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks
View PDFAbstract:We review and extend the vertex algebra framework linking gauge theory constructions and a quantum deformation of the Geometric Langlands Program. The relevant vertex algebras are associated to junctions of two boundary conditions in a 4d gauge theory and can be constructed from the basic ones by following certain standard procedures. Conformal blocks of modules over these vertex algebras give rise to twisted D-modules on the moduli stacks of G-bundles on Riemann surfaces which have applications to the Langlands Program. In particular, we construct a series of vertex algebras for every simple Lie group G which we expect to yield D-module kernels of various quantum Geometric Langlands dualities. We pay particular attention to the full duality group of gauge theory, which enables us to extend the standard qGL duality to a larger duality groupoid. We also discuss various subtleties related to the spin and gerbe structures and present a detailed analysis for the U(1) and SU(2) gauge theories.
Submission history
From: Edward Frenkel [view email][v1] Tue, 1 May 2018 06:33:55 UTC (131 KB)
[v2] Thu, 2 Apr 2020 17:33:01 UTC (132 KB)
Current browse context:
math.RT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.