Mathematics > Algebraic Geometry
[Submitted on 1 May 2018 (v1), last revised 27 Apr 2019 (this version, v2)]
Title:Anti-commuting varieties
View PDFAbstract:We study the anti-commuting variety which consists of pairs of anti-commuting $n\times n$ matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT quotient of the anti-commuting variety with respect to the conjugation action of $GL_n$ is shown to be of pure dimension $n$. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension $n^2$ and describe its irreducible components.
Submission history
From: Weiqiang Wang [view email][v1] Tue, 1 May 2018 15:02:27 UTC (27 KB)
[v2] Sat, 27 Apr 2019 16:13:33 UTC (26 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.