High Energy Physics - Theory
[Submitted on 2 May 2018 (v1), last revised 22 Sep 2018 (this version, v2)]
Title:Killing spinors from classical r-matrices
View PDFAbstract:The Yang-Baxter (YB) deformation is a systematic way of performibg integrable deformations of two-dimensional symmetric non-linear sigma models. The deformations can be labeled by classical $r$-matrices satisfying the classical YB equation. This YB deformation is also applicable to type IIB superstring theory defined on $\mathrm{AdS}_5\times S^5$. In this case, a simple class of YB deformation is associated with TsT transformations of string backgrounds. The data of this transformation is encoded in an antisymmetric bi-vector $\Theta$ (which is often called $\beta$ field or non-commutativity parameter). In this article, we give a simple recipe for obtaining the explicit expression for the Killing spinors of the TsT transformed background starting from $\Theta$. We moreover discuss the M-theory equivalent of the TsT transformation, allowing us to also give Killing spinors of 11-dimensional backgrounds. We discuss examples of TsT transformed backgrounds starting from flat space, $\mathrm{AdS}_{5}\times S^5$ and $\mathrm{AdS}_{7}\times S^4$. We find that in this way we can relate the $\Omega$-deformation to YB deformations.
Submission history
From: Domenico Orlando [view email][v1] Wed, 2 May 2018 18:00:03 UTC (39 KB)
[v2] Sat, 22 Sep 2018 14:23:28 UTC (37 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.