Mathematics > Algebraic Geometry
[Submitted on 2 May 2018 (v1), last revised 8 Jan 2021 (this version, v3)]
Title:Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry
View PDFAbstract:Let L be an ample line bundle on a (geometrically reduced) projective variety X over any complete valued field. Our main result describes the leading asymptotics of the determinant of cohomology of large powers of L, with respect to the supnorm of a continuous metric on the Berkovich analytification of L. As a consequence, we establish in this setting the existence of transfinite diameters and equidistribution of Fekete points, following a strategy going back Berman, Witt Nyström and the first author for complex manifolds. In the non-Archimedean case, our approach relies on a version of the Knudsen-Mumford expansion for the determinant of cohomology on models over the (possibly non-Noetherian) valuation ring, as a replacement for the asymptotic expansion of Bergman kernels in the complex case, and on the reduced fiber theorem, as a replacement for the Bernstein-Markov inequalities. Along the way, a systematic study of spaces of norms and the associated Fubini-Study type metrics is undertaken.
Submission history
From: Sebastien Boucksom [view email][v1] Wed, 2 May 2018 20:55:31 UTC (108 KB)
[v2] Tue, 25 Feb 2020 10:13:14 UTC (93 KB)
[v3] Fri, 8 Jan 2021 15:42:40 UTC (94 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.