High Energy Physics - Theory
[Submitted on 3 May 2018 (v1), last revised 12 Sep 2018 (this version, v2)]
Title:AdS Weight Shifting Operators
View PDFAbstract:We construct a new class of differential operators that naturally act on AdS harmonic functions. These are weight shifting operators that change the spin and dimension of AdS representations. Together with CFT weight shifting operators, the new operators obey crossing equations that relate distinct representations of the conformal group. We apply our findings to the computation of Witten diagrams, focusing on the particular case of cubic interactions and on massive, symmetric and traceless fields. In particular we show that tree level 4-point Witten diagrams with arbitrary spins, both in the external fields and in the exchanged field, can be reduced to the action of weight shifting operators on similar 4-point Witten diagrams where all fields are scalars. We also show how to obtain the conformal partial wave expansion of these diagrams using the new set of operators. In the case of 1-loop diagrams with cubic couplings we show how to reduce them to similar 1-loop diagrams with scalar fields except for a single external spinning field (which must be a scalar in the case of a two-point diagram). As a bonus, we provide new CFT and AdS weight shifting operators for mixed-symmetry tensors.
Submission history
From: Tobias Hansen [view email][v1] Thu, 3 May 2018 18:15:01 UTC (55 KB)
[v2] Wed, 12 Sep 2018 09:16:21 UTC (57 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.