Mathematics > Analysis of PDEs
[Submitted on 7 May 2018]
Title:Asymptotic estimates for the p-Laplacian on infinite graphs with decaying initial data
View PDFAbstract:We consider the Cauchy problem for the evolutive discrete p-Laplacian in infinite graphs, with initial data decaying at infinity.
We prove optimal sup and gradient bounds for nonnegative solutions, when the initial data has finite mass, and also sharp evaluation for the confinement of mass, i.e., the effective speed of propagation. We provide estimates for some moments of the solution, defined using the distance from a given vertex.
Our technique relies on suitable inequalities of Faber-Krahn type, and looks at the local theory of continuous nonlinear partial differential equations. As it is known, however, not all of this approach can have a direct counterpart in graphs. A basic tool here is a result connecting the supremum of the solution at a given positive time with the measure of its level sets at previous times.
We also consider the case of slowly decaying initial data, where the total mass is infinite.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.