Mathematics > Algebraic Geometry
[Submitted on 7 May 2018]
Title:Approches courantielles à la Mellin dans un cadre non archimédien
View PDFAbstract:We propose an approach of Mellin type for the approximation of integration currents or the effective realization of normalized Green currents associated with a cycle $ \bigwedge_1^m[{\rm div} (s_j)] $, where $s_j $ is a meromorphic section of a line bundle $ \mathscr{L}_j \rightarrow U$ over an open $U$ in a good Berkovich space when each $ \mathscr{L}_j$ has a smooth metric and $ {\rm codim}_{U}\big (\bigcap_{j \in J} {\rm Supp} [{\rm div (s_j)}] \big)\geq \# J$ for every set $ J \subset \{1, ..., p \} $. We also study the transposition to the non archimedean context of Crofton and King formulas, particularly the approximate realization of Vogel and Segre currents.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.