High Energy Physics - Theory
[Submitted on 7 May 2018]
Title:Colored Alexander polynomials and KP hierarchy
View PDFAbstract:We discuss the relation between knot polynomials and the KP hierarchy. Mainly, we study the scaling 1-hook property of the coloured Alexander polynomial: $\mathcal{A}^\mathcal{K}_R(q)=\mathcal{A}^\mathcal{K}_{[1]}(q^{\vert R\vert})$ for all 1-hook Young diagrams $R$. Via the Kontsevich construction, it is reformulated as a system of linear equations. It appears that the solutions of this system induce the KP equations in the Hirota form. The Alexander polynomial is a specialization of the HOMFLY polynomial, and it is a kind of a dual to the double scaling limit, which gives the special polynomial, in the sense that, while the special polynomials provide solutions to the KP hierarchy, the Alexander polynomials provide the equations of this hierarchy. This gives a new connection with integrable properties of knot polynomials and puts an interesting question about the way the KP hierarchy is encoded in the full HOMFLY polynomial.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.