Mathematics > Classical Analysis and ODEs
[Submitted on 7 May 2018 (v1), last revised 13 Mar 2019 (this version, v3)]
Title:Sharp $L^2$ estimate of Schrödinger maximal function in higher dimensions
View PDFAbstract:We show that, for $n\geq 3$, $\lim_{t \to 0} e^{it\Delta}f(x) = f(x)$ holds almost everywhere for all $f \in H^s (\mathbb{R}^n)$ provided that $s>\frac{n}{2(n+1)}$. Due to a counterexample by Bourgain, up to the endpoint, this result is sharp and fully resolves a problem raised by Carleson. Our main theorem is a fractal $L^2$ restriction estimate, which also gives improved results on the size of divergence set of Schrödinger solutions, the Falconer distance set problem and the spherical average Fourier decay rates of fractal measures. The key ingredients of the proof include multilinear Kakeya estimates, decoupling and induction on scales.
Submission history
From: Xiumin Du [view email][v1] Mon, 7 May 2018 23:11:37 UTC (100 KB)
[v2] Tue, 19 Jun 2018 00:12:27 UTC (101 KB)
[v3] Wed, 13 Mar 2019 02:22:15 UTC (1,705 KB)
Current browse context:
math.CA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.