Mathematics > Geometric Topology
[Submitted on 8 May 2018 (v1), last revised 11 Jul 2020 (this version, v2)]
Title:Pretzel links, mutation, and the slice-ribbon conjecture
View PDFAbstract:Let p and q be distinct integers greater than one. We show that the 2-component pretzel link P(p,q,-p,-q) is not slice, even though it has a ribbon mutant, by using 3-fold branched covers and an obstruction based on Donaldson's diagonalization theorem. As a consequence, we prove the slice-ribbon conjecture for 4-stranded 2-component pretzel links.
Submission history
From: JungHwan Park [view email][v1] Tue, 8 May 2018 08:15:02 UTC (236 KB)
[v2] Sat, 11 Jul 2020 15:37:12 UTC (437 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.