Mathematics > Number Theory
[Submitted on 8 May 2018]
Title:Almost $C_p$ Galois representations and vector bundles
View PDFAbstract:Let $K$ be a finite extension of $\mathbb{Q}_p$ and $G_K$ the absolute Galois group. Then $G_K$ acts on the fundamental curve $X$ of $p$-adic Hodge theory and we may consider the abelian category $\mathcal{M}(G_K)$ of coherent $\mathcal{O}_X$-modules equipped with a continuous and semi-linear action of $G_K$. An almost $C_p$-representation of $G_K$ is a $p$-adic Banach space $V$ equipped with a linear and continuous action of $G_K$ such that there exists $d\in\mathbb{N}$, two $G_K$-stable finite dimensional sub-$\mathbb{Q}_p$-vector spaces $U_+$ of $V$, $U_-$ of $C_p^d$, and a $G_K$-equivariant isomorphism $V/U_+\to C_p^d/U_-$. These representations form an abelian category $\mathcal{C}(G_K)$. The main purpose of this paper is to prove that $\mathcal{C}(G_K)$ can be recovered from $\mathcal{M}(G_K)$ by a simple construction (and conversely) inducing, in particular, an equivalence of triangulated categories $D^b(\mathcal{M}(G_K))\to D^b(\mathcal{C}(G_K))$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.