Mathematical Physics
[Submitted on 8 May 2018]
Title:Methods of modern mathematical physics: Uncertainty and exclusion principles in quantum mechanics
View PDFAbstract:These are lecture notes for a master-level course given at KTH, Stockholm, in the spring of 2017, with the primary aim of proving the stability of matter from first principles using modern mathematical methods in many-body quantum mechanics. General quantitative formulations of the uncertainty and the exclusion principles of quantum mechanics are introduced, such as the Hardy, Sobolev and Poincaré functional inequalities as well as the powerful Lieb-Thirring inequality that combines these two principles. The notes are aimed to be both fairly self-contained and at the same time complementary to existing literature, also covering recent developments to prove Lieb-Thirring inequalities and stability from general, weaker formulations of the exclusion principle.
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.