Mathematics > Algebraic Geometry
[Submitted on 9 May 2018]
Title:Differentiable approximation of continuous semialgebraic maps
View PDFAbstract:In this work we approach the problem of approximating uniformly continuous semialgebraic maps $f:S\to T$ from a compact semialgebraic set $S$ to an arbitrary semialgebraic set $T$ by semialgebraic maps $g:S\to T$ that are differentiable of class~${\mathcal C}^\nu$ for a fixed integer $\nu\geq1$. As the reader can expect, the difficulty arises mainly when one tries to keep the same target space after approximation. For $\nu=1$ we give a complete affirmative solution to the problem: such a uniform approximation is always possible. For $\nu \geq 2$ we obtain density results in the two following relevant situations: either $T$ is compact and locally ${\mathcal C}^\nu$ semialgebraically equivalent to a polyhedron, for instance when $T$ is a compact polyhedron; or $T$ is an open semialgebraic subset of a Nash set, for instance when $T$ is a Nash set. Our density results are based on a recent ${\mathcal C}^1$-triangulation theorem for semialgebraic sets due to Ohmoto and Shiota, and on new approximation techniques we develop in the present paper. Our results are sharp in a sense we specify by explicit examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.