Mathematics > Optimization and Control
[Submitted on 9 May 2018]
Title:On three soft rectangle packing problems with guillotine constraints
View PDFAbstract:We investigate how to partition a rectangular region of length $L_1$ and height $L_2$ into $n$ rectangles of given areas $(a_1, \dots, a_n)$ using two-stage guillotine cuts, so as to minimize either (i) the sum of the perimeters, (ii) the largest perimeter, or (iii) the maximum aspect ratio of the rectangles. These problems play an important role in the ongoing Vietnamese land-allocation reform, as well as in the optimization of matrix multiplication algorithms. We show that the first problem can be solved to optimality in $\mathcal{O}(n \log n)$, while the two others are NP-hard. We propose mixed integer programming (MIP) formulations and a binary search-based approach for solving the NP-hard problems. Experimental analyses are conducted to compare the solution approaches in terms of computational efficiency and solution quality, for different objectives.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.