Mathematics > Rings and Algebras
[Submitted on 10 May 2018 (v1), last revised 12 Oct 2018 (this version, v2)]
Title:Categories and weak equivalences of graded algebras
View PDFAbstract:When one studies the structure (e.g. graded ideals, graded subspaces, radicals, ...) or graded polynomial identities of graded algebras, the grading group itself does not play an important role, but can be replaced by any other group that realizes the same grading. Here we come to the notion of weak equivalence of gradings: two gradings are weakly equivalent if there exists an isomorphism between the graded algebras that maps each graded component onto a graded component. Each group grading on an algebra can be weakly equivalent to G-gradings for many different groups G, however it turns out that there is one distinguished group among them called the universal group of the grading. In this paper we study categories and functors related to the notion of weak equivalence of gradings. In particular, we introduce an oplax 2-functor that assigns to each grading its support and show that the universal grading group functor has neither left nor right adjoint.
Submission history
From: Alexey Sergeevich Gordienko [view email][v1] Thu, 10 May 2018 17:26:26 UTC (19 KB)
[v2] Fri, 12 Oct 2018 10:33:52 UTC (19 KB)
Current browse context:
math.RA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.