Mathematics > Number Theory
[Submitted on 11 May 2018 (v1), last revised 12 Sep 2018 (this version, v2)]
Title:A Note on the Formal Groups of Weighted Delsarte Threefolds
View PDFAbstract:One-dimensional formal groups over an algebraically closed field of positive characteristic are classified by their height. In the case of $K3$ surfaces, the height of their formal groups takes integer values between $1$ and $10$, or $\infty$. For Calabi-Yau threefolds, the height is bounded by $h^{1,2}+1$ if it is finite, where $h^{1,2}$ is a Hodge number. At present, there are only a limited number of concrete examples for explicit values or the distribution of the height. In this paper, we consider Calabi-Yau threefolds arising from weighted Delsarte threefolds in positive characteristic. We describe an algorithm for computing the height of their formal groups and carry out calculations with various Calabi-Yau threefolds of Delsarte type.
Submission history
From: Yasuhiro Goto [view email] [via SIGMA proxy][v1] Fri, 11 May 2018 03:04:56 UTC (10 KB)
[v2] Wed, 12 Sep 2018 04:11:38 UTC (16 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.