High Energy Physics - Theory
[Submitted on 14 May 2018 (v1), last revised 3 Jan 2019 (this version, v4)]
Title:Discrete Painleve system and the double scaling limit of the matrix model for irregular conformal block and gauge theory
View PDFAbstract:We study the partition function of the matrix model of finite size that realizes the irregular conformal block for the case of the ${\cal N}=2$ supersymmetric $SU(2)$ gauge theory with $N_f =2$. This model has been obtained in [arXiv:1008.1861 [hep-th]] as the massive scaling limit of the $\beta$ deformed matrix model representing the conformal block. We point out that the model for the case of $\beta =1$ can be recast into a unitary matrix model with log potential and show that it is exhibited as a discrete Painlevé system by the method of orthogonal polynomials. We derive the Painlevé II equation, taking the double scaling limit in the vicinity of the critical point which is the Argyres-Douglas type point of the corresponding spectral curve. By the $0$d-$4$d dictionary, we obtain the time variable and the parameter of the double scaled theory respectively from the sum and the difference of the two mass parameters scaled to their critical values.
Submission history
From: Takeshi Oota [view email][v1] Mon, 14 May 2018 08:21:24 UTC (12 KB)
[v2] Mon, 21 May 2018 11:48:18 UTC (12 KB)
[v3] Sun, 28 Oct 2018 05:00:49 UTC (13 KB)
[v4] Thu, 3 Jan 2019 08:49:33 UTC (13 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.