Mathematics > Algebraic Geometry
[Submitted on 15 May 2018 (v1), last revised 29 Jan 2021 (this version, v3)]
Title:Fundamental classes in motivic homotopy theory
View PDFAbstract:We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of Fulton-MacPherson. We import the tools of Fulton's intersection theory into this setting: (refined) Gysin maps, specialization maps, and formulas for excess intersections, self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in this setting. For the Milnor-Witt spectrum recently constructed by Déglise-Fasel, we get a bivariant theory extending the Chow-Witt groups of Barge-Morel, in the same way the higher Chow groups extend the classical Chow groups. As another application we prove a motivic Gauss-Bonnet formula, computing Euler characteristics in the motivic homotopy category.
Submission history
From: Adeel A. Khan [view email][v1] Tue, 15 May 2018 17:22:43 UTC (41 KB)
[v2] Sun, 23 Dec 2018 09:01:32 UTC (58 KB)
[v3] Fri, 29 Jan 2021 13:51:04 UTC (59 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.