High Energy Physics - Theory
[Submitted on 16 May 2018]
Title:Holographic dual of hot Polchinski-Strassler quark-gluon plasma
View PDFAbstract:We construct the supergravity dual of the hot quark-gluon plasma in the mass-deformed ${\cal N}=4$ Super-Yang-Mills theory (also known as ${\cal N}=1^*$). The full ten-dimensional type IIB holographic dual is described by 20 functions of two variables, which we determine numerically, and it contains a black hole with $S^5$ horizon topology. As we lower the temperature to around half of the mass of the chiral multiplets, we find evidence for (most likely a first-order) phase transition, which could lead either to one of the Polchinski-Strassler confining, screening, or oblique vacua with polarized branes, or to an intermediate phase corresponding to blackened polarized branes with an $S^2 \times S^3$ horizon topology. This phase transition is a feature that could in principle be seen by putting the theory on the lattice, and thus our result for the ratio of the chiral multiplet mass to the phase transition temperature, $m_c/T = 2.15467491205(6)$, constitutes the first prediction of string theory and AdS/CFT that could be independently checked via four-dimensional super-QCD lattice computation. We also construct the black-hole solution in certain five-dimensional gauged supergravity truncations and, without directly using uplift/reduction formulae, we find strong evidence that the five- and ten-dimensional solutions are the same. This indicates that five-dimensional gauged supergravity is powerful enough to capture the physics of the high-temperature deconfined phase of the Polchinski-Strassler quark-gluon plasma.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.