High Energy Physics - Theory
[Submitted on 16 May 2018 (v1), last revised 10 Aug 2019 (this version, v4)]
Title:Top Down Approach to 6D SCFTs
View PDFAbstract:Six-dimensional superconformal field theories (6D SCFTs) occupy a central place in the study of quantum field theories encountered in high energy theory. This article reviews the top down construction and study of this rich class of quantum field theories, in particular, how they are realized by suitable backgrounds in string / M- / F-theory. We review the recent F-theoretic classification of 6D SCFTs, explain how to calculate physical quantities of interest such as the anomaly polynomial of 6D SCFTs, and also explain recent progress in understanding renormalization group flows for deformations of such theories. Additional topics covered by this review include some discussion on the (weighted and signed) counting of states in these theories via superconformal indices. We also include several previously unpublished results as well as a new variant on the swampland conjecture for general quantum field theories decoupled from gravity. The aim of the article is to provide a point of entry into this growing literature rather than an exhaustive overview.
Submission history
From: Jonathan Heckman [view email][v1] Wed, 16 May 2018 18:00:08 UTC (298 KB)
[v2] Mon, 30 Jul 2018 22:24:10 UTC (299 KB)
[v3] Wed, 20 Feb 2019 15:56:47 UTC (300 KB)
[v4] Sat, 10 Aug 2019 23:43:04 UTC (300 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.