High Energy Physics - Theory
[Submitted on 17 May 2018]
Title:Mimetic Massive Gravity: Beyond Linear Approximation
View PDFAbstract:We present a theory of ghost-free massive gravity where the mass of the graviton is generated through the Brout-Englert-Higgs (BEH) mechanism and one of the four scalar fields used is that of mimetic gravity. The mass term is not of the Fierz-Pauli type and the constraint eliminates the Boulware-Deser ghost which is absent to all orders. We perform a detailed analysis using the methods of cosmological perturbation theory and consider quantum fluctuations of the degrees of freedom of massive graviton and mimetic matter. It is shown that for three of the degrees of freedom of the graviton of mass $m$ the nonlinear corrections become comparable to the linear terms already at a length scale of order $m^{-\frac{1}{2}}$. Thus, at smaller scales they become strongly coupled and the graviton remains with two transverse degrees of freedom which get strongly coupled only at Planck scale. The mimetic field behaves as cold particles of half of the graviton mass and could well explain the source of dark matter in our universe. In the weakly coupled domain mimetic matter is completely decoupled from the massive graviton.
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.