High Energy Physics - Theory
[Submitted on 17 May 2018 (v1), last revised 13 Mar 2019 (this version, v2)]
Title:Holographic Viscoelastic Hydrodynamics
View PDFAbstract:Relativistic fluid hydrodynamics, organized as an effective field theory in the velocity gradients, has zero radius of convergence due to the presence of non-hydrodynamic excitations. Likewise, the theory of elasticity of brittle solids, organized as an effective field theory in the strain gradients, has zero radius of convergence due to the process of the thermal nucleation of cracks. Viscoelastic materials share properties of both fluids and solids. We use holographic gauge theory/gravity correspondence to study all order hydrodynamics of relativistic viscoelastic media.
Submission history
From: Matteo Baggioli [view email][v1] Thu, 17 May 2018 13:34:24 UTC (677 KB)
[v2] Wed, 13 Mar 2019 21:32:59 UTC (682 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.