Mathematics > Algebraic Geometry
[Submitted on 17 May 2018]
Title:On stringy Euler characteristics of Clifford non-commutative varieties
View PDFAbstract:It was shown by Kuznetsov that complete intersections of $n$ generic quadrics in ${\mathbb P}^{2n-1}$ are related by Homological Projective Duality to certain non-commutative (Clifford) varieties which are in some sense birational to double covers of ${\mathbb P}^{n-1}$ ramified over symmetric determinantal hypersurfaces. Mirror symmetry predicts that the Hodge numbers of the complete intersections of quadrics must coincide with the appropriately defined Hodge numbers of these double covers. We observe that these numbers must be different from the well-known Batyrev's stringy Hodge numbers, else the equality fails already at the level of Euler characteristics. We define a natural modification of stringy Hodge numbers for the particular class of Clifford varieties, and prove the corresponding equality of Euler characteristics in arbitrary dimension.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.