Mathematics > Number Theory
[Submitted on 18 May 2018 (v1), last revised 7 Nov 2018 (this version, v2)]
Title:No singular modulus is a unit
View PDFAbstract:A result of the second-named author states that there are only finitely many CM-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke's Equidistribution Theorem and is hence non-effective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted computations, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in $\mathbb{C}^n$ not containing any special points.
Submission history
From: Philipp Habegger [view email][v1] Fri, 18 May 2018 12:24:13 UTC (27 KB)
[v2] Wed, 7 Nov 2018 12:07:54 UTC (28 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.