High Energy Physics - Theory
[Submitted on 6 May 2018 (v1), last revised 12 Jun 2018 (this version, v2)]
Title:Analytical and numerical study of backreacting one-dimensional holographic superconductors in the presence of Born-Infeld electrodynamics
View PDFAbstract:We analytically as well as numerically study the effects of Born-Infeld nonlinear electrodynamics on the properties of $(1+1)$-dimensional s-wave holographic superconductors. We relax the probe limit and further assume the scalar and gauge fields affect on the background spacetime. We thus explore the effects of backreaction on the condensation of the scalar hair. For the analytical method, we employ the Sturm-Liouville eigen value problem and for the numerical method, we employ the shooting method. We show that these methods are powerful enough to analyze the critical temperature and phase transition of the one dimensional holographic superconductor. We find out that increasing the backreaction as well as nonlinearity makes the condensation harder to form. In addition, this one-dimensional holographic superconductor faces with second order phase transition and their critical exponent has the mean field value $\beta={1}/{2}$.
Submission history
From: Ahmad Sheykhi [view email][v1] Sun, 6 May 2018 19:27:54 UTC (483 KB)
[v2] Tue, 12 Jun 2018 16:28:23 UTC (484 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.