High Energy Physics - Theory
[Submitted on 21 May 2018 (v1), last revised 15 Jun 2018 (this version, v2)]
Title:Holographic transports from Born-Infeld electrodynamics with momentum dissipation
View PDFAbstract:We construct the Einstein-axions AdS black hole from Born-Infeld electrodynamics. Various DC transport coefficients of the dual boundary theory are computed. The DC electric conductivity depends on the temperature, which is a novel property comparing to that in RN-AdS black hole. The DC electric conductivity are positive at zero temperature while the thermal conductivity vanishes, which implies that the dual system is an electrical metal but thermal insulator. The effects of Born-Infeld parameter on the transport coefficients are analyzed. Finally, we study the AC electric conductivity from Born-Infeld electrodynamics with momentum dissipation. For weak momentum dissipation, the low frequency behavior satisfies the standard Drude formula and the electric transport is coherent for various correction parameter. While for stronger momentum dissipation, the modified Drude formula is applied and we observe a crossover from coherent to incoherent phase. Moreover, the Born-Infeld correction amplifies the incoherent behavior. Finally, we study the non-linear conductivity in probe limit and compare our results with those observed in (i)DBI model.
Submission history
From: Jian-Pin Wu [view email][v1] Mon, 21 May 2018 06:12:34 UTC (1,672 KB)
[v2] Fri, 15 Jun 2018 23:29:23 UTC (1,674 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.