Computer Science > Information Theory
[Submitted on 21 May 2018]
Title:Category coding with neural network application
View PDFAbstract:In many applications of neural network, it is common to introduce huge amounts of input categorical features, as well as output labels. However, since the required network size should have rapid growth with respect to the dimensions of input and output space, there exists huge cost in both computation and memory resources. In this paper, we present a novel method called category coding (CC), where the design philosophy follows the principle of minimal collision to reduce the input and output dimension effectively. In addition, we introduce three types of category coding based on different Euclidean domains. Experimental results show that all three proposed methods outperform the existing state-of-the-art coding methods, such as standard cut-off and error-correct output coding (ECOC) methods.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.