High Energy Physics - Theory
[Submitted on 21 May 2018 (v1), last revised 30 Jul 2018 (this version, v2)]
Title:Baryons under Strong Magnetic Fields or in Theories with Space-dependent $θ$-term
View PDFAbstract:Baryonic states are sufficiently complex to reveal physics that is hidden in the mesonic bound states. Using gauge/gravity correspondence we study analytically and numerically baryons in theories with space-dependent $\theta$-term, or theories under strong magnetic fields. Such holographic studies on baryons are accommodated in a generic analytic framework we develop for anisotropic theories, where their qualitative features are common irrespective of the source that triggers the anisotropy. We find that the distribution of the quarks forming the state, depends on the angle between the baryon and the anisotropic direction. Its shape is increasingly elliptic with respect to the strength of the field sourcing the anisotropy, counterbalancing the broken rotational invariance on the gluonic degrees of freedom. Strikingly, the baryons dissociate in stages with a process that depends on the proximity of the quarks to the anisotropic direction, where certain quark pairs abandon the bound state first, followed by the closest pairs to them as the temperature increases. This observation may also serve as a way to identify the nature of certain exotic states. Finally, we investigate holographic baryons with decreased number of quarks and explain why in theories under consideration the presence of anisotropy does not modify the universal stability condition in contrast to the usual trend.
Submission history
From: Dimitrios Giataganas [view email][v1] Mon, 21 May 2018 18:26:03 UTC (1,177 KB)
[v2] Mon, 30 Jul 2018 10:17:58 UTC (1,177 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.