Mathematics > Algebraic Geometry
[Submitted on 23 May 2018]
Title:On the classification problem for the genera of quotients of the Hermitian curve
View PDFAbstract:In this paper we characterize the genera of those quotient curves $\mathcal{H}_q/G$ of the $\mathbb{F}_{q^2}$-maximal Hermitian curve $\mathcal{H}_q$ for which $G$ is contained in the maximal subgroup $\mathcal{M}_1$ of ${\rm Aut}(\mathcal{H}_q)$ fixing a self-polar triangle, or $q$ is even and $G$ is contained in the maximal subgroup $\mathcal{M}_2$ of ${\rm Aut}(\mathcal{H}_q)$ fixing a pole-polar pair $(P,\ell)$ with respect to the unitary polarity associated to $\mathcal{H}_q(\mathbb{F}_{q^2})$. In this way several new values for the genus of a maximal curve over a finite field are obtained. Together with what is known in the literature, our results leave just two open cases to provide the complete list of genera of Galois subcovers of the Hermitian curve; namely, the open cases in [Bassa-Ma-Xing-Yeo, J. Combin. Theory Ser. A, 2013] when $G$ fixes a point $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $q$ is even, and the open cases in [Montanucci-Zini, Comm. Algebra, 2018] when $G\leq\mathcal{M}_2$ and $q$ is odd.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.