Mathematics > Algebraic Geometry
[Submitted on 24 May 2018 (v1), last revised 7 May 2019 (this version, v2)]
Title:On the fundamental groups of commutative algebraic groups
View PDFAbstract:Consider the abelian category ${\mathcal C}$ of commutative group schemes of finite type over a field $k$, its full subcategory ${\mathcal F}$ of finite group schemes, and the associated pro category ${\rm Pro}({\mathcal C})$ (resp. ${\rm Pro}({\mathcal F})$) of pro-algebraic (resp. profinite) group schemes. When $k$ is perfect, we show that the profinite fundamental group $\varpi_1 : {\rm Pro}({\mathcal C}) \to {\rm Pro}({\mathcal F})$ is left exact and commutes with base change under algebraic field extensions; as a consequence, the higher profinite homotopy functors $\varpi_i$ vanish for $i \geq 2$. Along the way, we describe the indecomposable projective objects of ${\rm Pro}({\mathcal C})$ over an arbitrary field $k$.
Submission history
From: Michel Brion [view email][v1] Thu, 24 May 2018 07:04:20 UTC (30 KB)
[v2] Tue, 7 May 2019 06:49:22 UTC (31 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.