Mathematics > Number Theory
[Submitted on 24 May 2018]
Title:ExactpAdics: An exact representation of p-adic numbers
View PDFAbstract:We describe two new packages ExactpAdics and ExactpAdicsII for the Magma computer algebra system for working with p-adic numbers exactly, in the sense that numbers are represented lazily to infinite p-adic precision. This has the benefits of increasing user-friendliness and speeding up some computations, as well as forcibly producing provable results. The two packages use different methods for lazy evaluation, which we describe and compare in detail. The intention is that this article will be of benefit to anyone wanting to implement similar functionality in other languages.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.