Mathematics > Number Theory
[Submitted on 27 May 2018 (v1), last revised 27 Jun 2018 (this version, v2)]
Title:Ranks, $2$-Selmer groups, and Tamagawa numbers of elliptic curves with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$-torsion
View PDFAbstract:In 2016, Balakrishnan-Ho-Kaplan-Spicer-Stein-Weigandt produced a database of elliptic curves over $\mathbb{Q}$ ordered by height in which they computed the rank, the size of the $2$-Selmer group, and other arithmetic invariants. They observed that after a certain point, the average rank seemed to decrease as the height increased. Here we consider the family of elliptic curves over $\mathbb{Q}$ whose rational torsion subgroup is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$. Conditional on GRH and BSD, we compute the rank of $92\%$ of the $202461$ curves with parameter height less than $10^3$. We also compute the size of the $2$-Selmer group and the Tamagawa product, and prove that their averages tend to infinity for this family.
Submission history
From: Wanlin Li [view email][v1] Sun, 27 May 2018 23:02:46 UTC (410 KB)
[v2] Wed, 27 Jun 2018 18:50:25 UTC (411 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.